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Abstract—This paper proposes an efficient root-finding algo-
rithm for the interpolation-based unique decoding of one-point
elliptic and hyperelliptic codes. Instead of finding a message
polynomial, it directly computes a codeword from the interpola-
tion polynomial. It first determines the error positions through
the error locator polynomial that is contained in the interpo-
lation polynomial. Subsequently, the corresponding codeword
symbols are determined based on the root-finding equation that
is reformulated as a linear system of univariate polynomials.
The proposed algorithm demonstrates superiority to the Roth-
Ruckenstein (RR) algorithm, especially in the scenarios that the
decoder is required to output a codeword and the re-encoding
transform (ReT) technique is employed.

Index Terms—Algebraic-geometric codes, elliptic curves, hy-
perelliptic curves, interpolation-based decoding, root-finding

I. INTRODUCTION

Constructed over an algebraic curve, algebraic-geometric
(AG) codes [1] have a good minimum distance property and
a codeword length that can exceed the size of the underlying
finite field. Elliptic and hyperelliptic codes are a class of AG
codes. They are instances of codes from the Miura-Kamiya
curves [2], which exhibit simpler encoding and decoding
computations than most other AG codes.

Decoding algorithms for AG codes can be categorized into
syndrome-based [3]–[5] and interpolation-based [6] [7] ap-
proaches. The former first determines an error-locator function
and then obtains an estimated codeword through computing
the error values over the error positions [8]–[10]. The later
first constructs an interpolation polynomial and then obtains a
list of estimated message functions, i.e., achieves list decoding
through finding the roots of the polynomial. When both the in-
terpolation multiplicity and list size are one, the interpolation-
based decoding turns into a unique decoding that can correct
up to b(d∗ − g− 1)/2c errors1 [12], where d∗ and g denote
the designed distance and genus of the code, respectively.
This setting frequently occurs in the algebraic Chase decoding
(ACD) [13]–[15], where the complexity of root-finding is
prominent as it needs to be executed for a set of interpolation
polynomials. To realize the root-finding, the Roth-Ruckenstein
(RR) algorithm [16] and its divide-and-conquer variants [17]–
[19] can be utilized. They output message functions. However,
there are certain scenarios that require the decoder to output

1In most cases, it corrects up to b(d∗ − 1)/2c errors [11].

codewords, such as when the encoder employs a systematic
encoding scheme or the likelihood of estimated codewords
needs to be measured (e.g., in the ACD). In these scenarios,
the RR algorithm has to encode the output messages in order to
obtain the corresponding codewords. Moreover, when the re-
encoding transform (ReT) [20]–[22] is employed to facilitate
the interpolation, the RR algorithm requires a restoration of
the interpolation polynomial, which involves multiplying two
polynomials with a large degree.

This paper proposes an efficient root-finding algorithm for
the interpolation-based unique decoding of one-point ellip-
tic and hyperelliptic codes. Instead of finding a message
polynomial, it directly computes a codeword from the in-
terpolation polynomial. This makes the output feature of
interpolation-based decoding consistent with that of syndrome-
based decoding. It begins with determining the error positions
through the error locator polynomial that is contained in
the interpolation polynomial. Subsequently, the correspond-
ing codeword symbols are determined based on the root-
finding equation that is reformulated as a linear system of
univariate polynomials. Compared to the RR algorithm, the
proposed algorithm eliminates the computations for encoding
the message polynomial to obtain a codeword and restoring the
interpolation polynomial in the context of ReT. Furthermore,
it also enables computational parallelism which would be
welcomed by hardware implementations.

Notations
Let F denote a Galois field (GF). The univariate, bivariate

and trivariate polynomial rings over F are denoted as F[x],
F[x, y] and F[x, y, z], respectively. Given a polynomial2

h(x, y, z) = ∑
ix>0

∑
iy>0

∑
iz>0

hix ,iy ,iz xix yiy ziz ,

its (wx, wy, wz)-weighted degree is defined as

degwx ,wy ,wz
h = max

ix ,iy ,iz
{wxix + wyiy + wziz : hix ,iy ,iz 6= 0}.

Its (wx, wy)-weighted degree, y-degree and z-degree are
further defined as degwx ,wy

h = degwx ,wy ,0 h, degy h =

deg0,1,0 h and degz h = deg0,0,1 h, respectively.

2A univariate or bivariate polynomial can be viewed as a special instance
of trivariate polynomials.
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II. PRELIMINARIES

A. Elliptic and Hyperelliptic Codes

Given an integer g > 1, let H(X, Y) be an absolutely
irreducible polynomial in the form of

H(X, Y) = Y2 + H1(X)Y + H0(X), (1)

where H0(X), H1(X) ∈ F[X], deg H1 6 g and deg H0 =
b := 2g + 1. An affine elliptic or hyperelliptic curve X over
F is defined by H(X, Y) = 0. When g = 1, it becomes
an elliptic curve. It can be shown that the genus of X is
g. The set of rational affine points on X is denoted as
P = {P1, P2, ..., Pn}, where Pj = (αj, β j) satisfies H(Pj) = 0
for all j = 1, 2, ..., n. The unique rational point at infinity is
denoted as P∞. According to the Serre bound [23, Chapter 5],
n 6 |F|+ gb2

√
|F|c. For each point Pj ∈ P , there exists a

unique point (αj,−β j − H1(αj)) ∈ P that shares the same
X-coordinate with Pj. Let s[j] denote its index. For the sake
of simplicity, this paper assumes that Pj 6= Ps[j].3

Let x and y denote two functions in the function field of
X which satisfy H(x, y) = 0. Based on (1), any nonzero
polynomial h(x, y) ∈ F[x, y] has poles only at P∞ with a pole
order of deg2,b h [24]. Moreover, if degy h > 2, there exists
another polynomial h′(x, y) ∈ F[x, y] with degy h′ < 2 such
that h(x, y) = h′(x, y). Consequently, F[x, y] is equivalent to
the following polynomial set

F[x][y]2 := {h ∈ F[x, y] : degy h < 2}
= {h0(x) + h1(x)y : h0, h1 ∈ F[x]}.

Based on the above prerequisites, the Riemann-Roch space
[23, Chapter 1] of divisor uP∞ can be represented as

L(uP∞) = { f ∈ F[x][y]2 : deg2,b f 6 u}. (2)

A one-point evaluation elliptic or hyperelliptic code of length
n is defined as

C(P , u)={( f (P1), f (P2), ..., f (Pn)) : f (x, y)∈L(uP∞)}.

When 2g − 2 < u < n, C(P , u) has a dimension of k =
u− g + 1 and a designed distance of d∗ = n− u.

B. Interpolation-Based Unique Decoding

Considering both the interpolation multiplicity and the list
size are one, the interpolation-based decoding can be formu-
lated as follows. Given a received word r = (r1, r2, ..., rn) ∈
Fn of C(P , u), let P = {(αj, β j, rj) : j = 1, 2, ..., n}. The
interpolation computes a nonzero polynomial Q(x, y, z) =
Q0(x, y) + Q1(x, y)z that interpolates points of P, i.e.,

Q(αj, β j, rj) = 0, for all j = 1, 2, ..., n. (3)

Meanwhile, deg2,b,u Q is minimal among all polynomials in

F[x, y][z]2 := {h ∈ F[x, y, z] : degz h < 2}

3Despite we overlook this case, the proposed algorithm can accommodate
it with a slight modification.

that interpolate points of P. The root-finding further computes
the z-root f̂ (x, y) of Q(x, y, z) such that

Q0(x, y) + Q1(x, y) f̂ (x, y) = 0. (4)

Note that the decoder can produce a valid output if and only if
the root-finding equation (4) has a solution in L(uP∞). Based
on the equivalence of F[x, y] and F[x][y]2, the aforementioned
bivariate polynomials can be represented as

f̂ (x, y) = f̂0(x) + f̂1(x)y,
Qi(x, y) = Q0,i(x) + Q1,i(x)y, for i = 1, 2.

(5)

III. THE ERROR LOCATOR POLYNOMIAL

This section first shows that Q1(x, y) is an error locator
polynomial. The error positions can be determined through
finding the zeros of Q1(x, y). Subsequently, the root-finding
equation (4) is reformulated as a linear system over F[x].
The determinant of the coefficient matrix can be viewed as
another form of the error locator polynomial. Properties of
this polynomial are characterized, providing the foundation for
determining the codeword symbols over the error positions.

A. Determination of Error Positions

Assume that there exists f̂ (x, y) ∈ L(uP∞) such that (4)
holds. In conjunction with (3), we have{

f̂ (Pj) = rj, if Q1(Pj) 6= 0;
Q0(Pj) = 0, if Q1(Pj) = 0.

(6)

This implies that rj is a codeword symbol if Q1(Pj) 6= 0;
otherwise, rj may be erroneous. Hence, Q1(x, y) is referred
to as an error locator polynomial [25]. Its zeros indicate all
the potential error positions.

Let us define the error position set as

E = {j ∈ {1, 2, ..., n} : Q1(Pj) = 0}. (7)

Its complement set is denoted as Ē := {1, 2, ..., n}\E . LetME
denote the set of polynomials in F[x][y]2 that interpolate Pj
for all j ∈ E , i.e.,

ME = {h ∈ F[x][y]2 : h(Pj) = 0 for all j ∈ E}.

It is demonstrated in Lemma 1 that the error locator polynomial
Q1(x, y) is a minimal polynomial in ME .

Lemma 1. If there exists f̂ (x, y) ∈ F[x][y]2 such that (4)
holds, then Q1(x, y) is a nonzero polynomial of the minimal
(2, b)-weighted degree among all polynomials inME , denoted
as Q1(x, y) = minME .

Due to space limitations, the proof of Lemma 1 is omitted.
It can be proven by contradiction with the assumption that
there exists a nonzero polynomial Q′1(x, y) ∈ ME such that
deg2,b Q′1 < deg2,b Q1. The following Lemma 2 characterizes
the (2, b)-weighted degree of the minimal polynomial inME .

Lemma 2. Let h(x, y) = minME . Then |E | 6 deg2,b h 6
|E |+ g.
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The lower bound in Lemma 2 is obvious and the upper
bound can be derived from Riemann’s theorem [23, Chapter
1]. Based on Lemmas 1 and 2, the degree relation

deg2,b Q1 − |E| 6 g (8)

is a necessary condition for f̂ (x, y) ∈ F[x][y]2. Moreover, for
f̂ (x, y) ∈ L(uP∞), it is required that

deg2,b Q0 − deg2,b Q1 6 u. (9)

Therefore, if either of conditions (8) and (9) is not satisfied,
the decoder declares failure. In fact, the numerical results in
Tab. II show that the decoder almost always produces a valid
output when these two conditions are both satisfied.

The following remark characterizes the computational com-
plexity of determining E . Note that in this paper, complexity
is measured as the number of finite field multiplications.

Remark 3. Determining the error position set E as in (7)
involves evaluating Q1(x, y) at Pj for all j = 1, 2, ..., n. Since
αj = αs[j], both Q1(Pj) and Q1(Ps[j]) can be obtained based on
Q0,1(αj) and Q1,1(αj), i.e., Q1(Pj′) = Q0,1(αj) + Q1,1(αj)β j′

for j′ = j, s[j]. If (8) holds, computing n/2 pairs of Q0,1(αj)
and Q1,1(αj) can be realized through less than n(|E | + g)/2
multiplications. Note that Q0,1(αj) and Q1,1(αj) may be reused
in the subsequent computations.

B. Root-Finding Equations over F[x]
With (5), the root-finding equation (4) can be rewritten as

Q0,0(x) + Q0,1(x) f̂0(x) + Q1,1(x) f̂1(x)y2

=− (Q1,0(x) + Q1,1(x) f̂0(x) + Q0,1(x) f̂1(x))y.

Based on H(x, y) = 0 and (1), it can be transformed into

Q0,0(x) + Q0,1(x) f̂0(x) + V0(x) f̂1(x)

=− (Q1,0(x) + Q1,1(x) f̂0(x) + V1(x) f̂1(x))y,
(10)

where
V0(x) = − H0(x)Q1,1(x),
V1(x) = Q0,1(x)− H1(x)Q1,1(x).

(11)

The above equation (10) can be viewed as a linear system over
the univariate polynomial ring F[x]:[

Q0,1(x) V0(x)
Q1,1(x) V1(x)

] [
f̂0(x)
f̂1(x)

]
= −

[
Q0,0(x)
Q1,0(x)

]
. (12)

Therefore, finding the estimated message polynomial f̂ (x, y)
has been transformed into finding the solution ( f̂0(x), f̂1(x))
to the F[x]-linear equations. Let D(x) denote the determinant
of the 2× 2 matrix in (12), i.e.,

D(x) = V1(x)Q0,1(x)−V0(x)Q1,1(x). (13)

Equation (12) has a unique solution only if D(x) 6= 0.
It is demonstrated by Theorem 5 that D(x) 6= 0. In fact,
D(x) can be understood as another form of the error locator
polynomial. To prove Theorem 5, the following Lemma 4
should be introduced first.

Lemma 4. Let S[E ] = {j ∈ E : s[j] ∈ E}. Then we have:

i) For any j ∈ S[E ], (x− αj) | Qiy ,iz(x) for iy = 0, 1 and
iz = 0, 1;

ii) For any j ∈ E\S[E ], Q1,1(αj) 6= 0.

Theorem 5. The determinant polynomial D(x) defined in
(13) satisfies the following three properties:

i) deg D = deg2,b Q1;
ii) D(x) is divisible by ∏j∈E (x− αj);

iii) When Q1(x, y) = minME , D(α) 6= 0 for any α ∈ F

that satisfies α 6= αj for all j ∈ E .

Proof: i) It can be observed that

deg2,b Q1 = max{2 deg Q0,1, 2 deg Q1,1 + b}.

Then we have 2 deg Q0,1 6= 2 deg Q1,1 + b since b = 2g + 1
is an odd number. Note that deg H0 = b and deg H1 6 g.
If 2 deg Q0,1 > 2 deg Q1,1 + b, then deg H1 + deg Q1,1 +
deg Q0,1 < 2 deg Q0,1 and thus deg D = 2 deg Q0,1. Oth-
erwise, deg H1 + deg Q1,1 + deg Q0,1 < 2 deg Q1,1 + b and
thus deg D = 2 deg Q1,1 + b. Therefore, deg D = deg2,b Q1.

The proofs of properties ii) and iii) involve the following
equations (14) and (15). Given α ∈ F,

D(α)=Q0,1(α)
2−H1(α)Q1,1(α)Q0,1(α)+H0(α)Q1,1(α)

2 (14)

If Q1,1(α) 6= 0, let ∆α = −Q0,1(α)/Q1,1(α). Then (14) can
be written as

D(α) = Q1,1(α)
2(∆2

α + H1(α)∆α + H0(α))

= Q1,1(α)
2H(α, ∆α).

(15)

ii) Based on Lemma 4, for each j ∈ E\S[E ], Q1,1(αj) 6= 0.
In conjunction with Q1(Pj) = 0, ∆αj = β j. According to (15),
D(αj) = Q1,1(αj)

2H(αj, β j) = 0, which indicates (x− αj) |
D(x). For each j ∈ S[E ], (x − αj) | Qi,1(x) for i = 0, 1.
According to (13), we have (x− αj)

2 | D(x). Therefore,

∏
j∈E

(x− αj) = ∏
j∈E\S[E ]

(x− αj) ∏
α∈{αj :j∈S[E ]}

(x− α)2

must be a factor for D(x).
iii) Consider Q1(x, y) = minME . Assume that there exists

α ∈ F that satisfies α 6= αj for all j ∈ E and D(α) = 0. Based
on (15), if Q1,1(α) 6= 0, then H(α, ∆α) = 0, i.e., (α, ∆α) ∈ P .
Since Q1(α, ∆α) = 0, there exists j ∈ E such that αj = α.
Based on (14), if Q1,1(α) = 0, then Q0,1(α) = 0, which leads
to Q1(α, y) = 0, i.e., (x − α) | Q1(x, y). Since α 6= αj for
all j ∈ E , Q1(x, y)/(x − α) is a polynomial in ME with a
(2, b)-weighted degree smaller than deg2,b Q1. Therefore, the
assumption leads to a contradiction.

Corollary 6. The determinant polynomial has the form of
D(x) = D̃(x)∏j∈E (x− αj), where D̃(x) ∈ F[x] satisfies

deg D̃ = deg2,b Q1 − |E|. (16)

Consequently, the solution to (12) can be obtained by

( f̂0(x), f̂1(x)) = (
N0(x)
D(x)

,
N1(x)
D(x)

) (17)
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if it exists, where

N0(x) =−V1(x)Q0,0(x) + V0(x)Q1,0(x),
N1(x) = Q1,1(x)Q0,0(x)−Q0,1(x)Q1,0(x).

(18)

Furthermore, Lemma 7 reveals that N0(x) and N1(x) contain
a factor of ∏j∈E (x− αj) as well as D(x). Its proof is similar
to that of the property ii) of Theorem 5.

Lemma 7. The polynomials N0(x) and N1(x) defined in
(18) are divisible by ∏j∈E (x− αj).

IV. DETERMINATION OF CODEWORD SYMBOLS OVER
ERROR POSITIONS

With the error position set E , this section shows how to
determine the codeword symbols over E based on the root-
finding equations over F[x]. Since D(x) has zeros at αj for
j ∈ E , computing evaluations f̂0(αj) and f̂1(αj), and further
the codeword symbol f̂ (Pj) requires the Hasse derivative.

Theorem 8 ([26]). Assume that h(x) = (x − γ)µ h̃(x),
where γ ∈ F, µ > 0 and h̃(x) ∈ F[x]. Let h[µ](x) denote
the µth-order Hasse derivative of h(x).4 Then h̃(γ) = h[µ](γ).

Let µj denote the zero order of D(x) at αj. If both N0(x)
and N1(x) have a zero of order at least µj at αj, then

f̂i(αj) =
N [µj ]

i (αj)

D[µj ](αj)
(19)

for i = 0, 1. Otherwise, equation (12) has no solution in F[x]2

and the decoder declares failure.
As shown in Theorem 5 and Lemma 7, D(x), N0(x) and

N1(x) contain a factor of ∏j∈E (x− αj). Hence, they all have
a zero of order at least one at αj for each j ∈ E . In particular,
for j ∈ S[E ], they all have a zero of order at least two at αj,
since s[j] ∈ E and αj = αs[j]. Let us define

E I = {j ∈ E\S[E ] : µj = 1},
E II = {j ∈ S[E ] : µj = 2}

and E III = E\(E I ∪ E II). Computing (19) for j ∈ E I ∪ E II in-
volves only low-order Hasse derivatives. Furthermore, Remark
9 reveals that E III contains relatively few error positions.

Remark 9. Based on Corollary 6, E III = {j ∈ E : D̃(αj) =
0}. Since there may exist j ∈ S[E ] such that D̃(αj) = 0,
|E III| 6 2 deg D̃. Along with (8) and (16), |E III| 6 2g.

Consider Q1(x, y) = minME . Based on the property iii) of
Theorem 5, E III 6= ∅ if and only if deg D̃ = 1, or deg D̃ > 1
and D̃(x) is reducible. In the case of deg D̃ = 1, we have
E III = {j∗} where j∗ ∈ E\S[E ] such that µj∗ = 2, or E III =
{j∗, s[j∗]} where j∗ ∈ S[E ] such that µj∗ = µs[j∗ ] = 3.

Based on the above discussion, the computation of (19) can
be categorized into three cases.

4Note that h[0](x) = h(x)

Case I: when j ∈ E\S[E ], based on equations (11), (13),
(18) and the product rule of Hasse derivative [27, Chapter 1],

D[1](αj) =
1

∑
i=0

1

∑
µ=0

(1− 2i)V [1−µ]

1−i (αj)Q
[µ]

i,1(αj),

N[1]
0 (αj) =

1

∑
i=0

1

∑
µ=0

(2i− 1)V [1−µ]

1−i (αj)Q
[µ]

i,0(αj),

N[1]
1 (αj) =

1

∑
i=0

1

∑
µ=0

(1− 2i)Q[1−µ]

1−i,1(αj)Q
[µ]

i,0(αj),

(20)

where

V [1]
0 (αj) = −H[1]

0 (αj)Q1,1(αj)− H0(αj)Q
[1]
1,1(αj),

V [1]
1 (αj) = Q[1]

0,1(αj)− H[1]
1 (αj)Q1,1(αj)− H1(αj)Q

[1]
1,1(αj).

Based on Theorem 8, j ∈ E I if and only if D[1](αj) 6= 0.

Case II: when j ∈ S[E ], D[2](αj), N[2]
0 (αj) and N[2]

1 (αj) can
also be derived from the first-order Hasse derivatives as

D[2](αj) = Ṽ1(αj)Q
[1]
0,1(αj)− Ṽ0(αj)Q

[1]
1,1(αj),

N[2]
0 (αj) = −Ṽ1(αj)Q

[1]
0,0(αj) + Ṽ0(αj)Q

[1]
1,0(αj),

N[2]
1 (αj) = Q[1]

1,1(αj)Q
[1]
0,0(αj)−Q[1]

0,1(αj)Q
[1]
1,0(αj),

(21)

where
Ṽ0(αj) = −H0(αj)Q

[1]
1,1(αj),

Ṽ1(αj) = Q[1]
0,1(αj)− H1(αj)Q

[1]
1,1(αj).

Based on Theorem 8, j ∈ E II if and only if D[2](αj) 6= 0.
Case III: when j ∈ E III, computation of (19) involves

the Hasse derivatives of an order greater than one. As an
alternative, we can determine f̂ (Pj) for all j ∈ E III using
general erasure decoding, e.g., solving the parity-check equa-
tions. If u < n− |E III|, any |E III| erasures can be corrected
with at most |E III|+ g parity-check equations. As discussed
in Remark 9, |E III| 6 2 deg D̃ 6 2g. In fact, it is shown
in Section V that E III is often empty or small. Its cardinality
struggles to approach 2g as g grows.

When the ReT [21] [22] is applied to the interpolation-based
decoding, there are minor modifications to the computations
of Qi,0(αj) and Q[1]

i,0(αj) for i = 0, 1.

Remark 10. Assume that rj = 0 for all j ∈ R, where R is a
set of 2b(k− g)/2c positions satisfying R = {j ∈ R : s[j] ∈
R}. Let φ(x) = ∏α∈{αj :j∈R}(x− α). It is shown in [21] [22]
that φ(x) is a factor for Q0(x, y), i.e.,

Q0(x, y) = φ(x)Q0(x, y), (22)

where Q0(x, y) = Q0,0(x) + Q1,0(x)y and Qi,0(x) =
φ(x)Qi,0(x) for i = 0, 1. With the ReT, the interpolation
outcome is Q(x, y, z) = Q0(x, y) + Q1(x, y)z. Based on the
product rule of Hasse derivative, Qi,0(αj) and Q[1]

i,0(αj) can be
computed by

Qi,0(αj) = φ(αj)Qi,0(αj),

Q[1]
i,0(αj) = φ[1](αj)Qi,0(αj) + φ(αj)Q

[1]
i,0(αj),
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where φ(αj) and φ[1](αj) can be pre-computed and φ(αj) = 0
for all j ∈ R. It is shown that the restoration of Q0(x, y) as in
(22) is unnecessary for the proposed root-finding algorithm.

The following Remark 11 provides an upper bound on the
complexity of determining f̂ (Pj) for all j ∈ E , which is
obtained by assuming that E = E I. The rationale behind the
assumption is that the computation of Case I is more complex
than that of Case II, and |E III| is often small.

Remark 11. For i = 0, 1 and j = 1, 2, ..., n, Hi(αj) and
H[1]

i (αj) can be pre-computed, and Qi,1(αj) have been obtained
in the determination of E . Hence, computing Qi,0(αj), Q[1]

i,0(αj)

and Q[1]
i,1(αj) for i = 0, 1 and j ∈ E dominates the complexity.

Based on (8) and (9), it requires less than

(2 deg2,b Q0 + deg2,b Q1)|E | < 3|E |2 + 2k|E |+ 5g|E |

multiplications. Furthermore, with the ReT, the number of
multiplications can be reduced to less than

3|E |2 + 7g|E |.

This is due to deg2,bQ0 = deg2,b Q0 − 2b(k − g)/2c. The
actual number may be even smaller, because for j ∈ R ∩ E ,
Qi,0(αj) = 0 and Q[1]

i,0(αj) = φ[1](αj)Qi,0(αj).

V. NUMERICAL RESULTS

This section presents some numerical results to demonstrate
the effectiveness of the necessary conditions (8) and (9) in
filtering invalid decodings, the limited computational cost of
Case III, and finally the complexity advantage of the proposed
algorithm over the RR algorithm. Since the comparison is
carried out at moderate codeword lengths, the RR algorithm
is implemented without divide-and-conquer extensions. The
(80, 41) elliptic code and the (128, 96) hyperelliptic code
are implemented for the decoding. They are constructed from
Y2 = Y + X3 and Y2 = Y + X9 over GF(64) with a designed
distance of 39 and 29, respectively.

TABLE I
DECODING STATISTICS OF THE (80, 41) ELLIPTIC CODE AND THE

(128, 96) HYPERELLIPTIC CODE

(n, k) (80, 41) (128, 96)
#error 19 20 13 14 15 16

(8) & (9) 100,000 1,197 100,000 100,000 1,526 23
#success 100,000 1,197 100,000 100,000 1,526 23

Table I shows the decoding statistics for the two codes
w.r.t. different numbers of errors. Each column shows the
statistics of the instances where (8) and (9) are met, and the
instances of successful decoding, under the specified number
of errors. They were obtained by decoding the received words
of 100,000 randomly generated codewords. It shows that the
decoding always succeeds when (8) and (9) are satisfied,
demonstrating their effectiveness in filtering invalid decodings.
It can also be seen that when the number of errors does not

exceed b(d∗ − 1)/2c, the decoding always succeeds though
the theoretical error-correction radius is b(d∗ − g− 1)/2c.

TABLE II
STATISTICS OF |E III| IN DECODING THE (128, 96) HYPERELLIPTIC CODE

#error 12 13 14 15 16
#success 100,000 100,000 100,000 1,526 23
|E III| = 0 80,797 79,453 78,728 1,183 18
|E III| = 1 15,883 16,752 17,021 270 3
|E III| = 2 2,989 3,359 3,722 67 2
|E III| = 3, 4, 5 331 436 529 6 0
|E III| > 6 0 0 0 0 0

Table II shows the statistics of |E III| in decoding the
(128, 96) hyperelliptic code. It shows that when the decod-
ing proceeds to determine the codeword symbols, E III often
remains empty or small. This indicates that Case III will only
introduce limited computational cost.

TABLE III
AVERAGE FINITE FIELD MULTIPLICATIONS IN DECODING THE (80, 41)

ELLIPTIC CODE AND THE (128, 96) HYPERELLIPTIC CODE

(n, k) (80, 41) (128, 96)
#error 18 19 20 13 14 15

RR? 3,281 3,343 1,675 10,973 11,114 4,955
Proposed? 1,560 1,661 797 1,516 1,663 954

RR 2,542 2,583 948 8,031 8,126 2,054
Proposed 2,462 2,605 806 3,450 3,699 1,008
? : With the ReT.

Finally, Table III compares the average complexity of the
proposed algorithm and the RR algorithm. The complexity is
measured as the average number of finite field multiplications
in decoding a codeword. In the RR algorithm, the estimated
message is encoded to obtain the estimated codeword. It can
be seen that with the ReT, the proposed algorithm exhibits a
significant advantage over the RR algorithm, since the latter
requires a restoration of the interpolation polynomial. Without
the ReT, the proposed algorithm outperforms the RR algorithm
in decoding the (128, 96) hyperelliptic code, while they have
a similar complexity in decoding the (80, 41) elliptic code.
This indicates that the proposed algorithm is more effective
for high rate codes.

It should be pointed out that the proposed algorithm can
achieve a higher degree of computational parallelism over the
RR algorithm. Its computation mainly consists of polynomial
evaluations, which can be performed in parallel. This feature
will be welcomed by practical implementations.
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